Archive for the ‘Chemical IT’ Category

A visualization of the anomeric effect from crystal structures.

Thursday, August 27th, 2015

The anomeric effect is best known in sugars, occuring in sub-structures such as RO-C-OR. Its origins relate to how the lone pairs on each oxygen atom align with the adjacent C-O bonds. When the alignment is 180°, one oxygen lone pair can donate into the C-O σ* empty orbital and a stabilisation occurs. Here I explore whether crystal structures reflect this effect.

(more…)

Mesomeric resonance in substituted benzenes: a crystallographic reality check.

Wednesday, August 26th, 2015

Previously, I showed how conjugation in dienes and diaryls can be visualised by inspecting bond lengths as a function of torsions. Here is another illustration, this time of the mesomeric resonance on a benzene ring induced by an electron donating substituent (an amino group) or an electron withdrawing substituent (cyano).

(more…)

A visualisation of the effects of conjugation; dienes and biaryls.

Tuesday, August 25th, 2015

Here is another exploration of simple chemical concepts using crystal structures. Consider a simple diene: how does the central C-C bond length respond to the torsion angle between the two C=C bonds?

(more…)

A (light) introductory tutorial on Research Data Management (in chemistry).

Thursday, August 20th, 2015

Management of research (data) outputs is a hot topic in the UK at the moment, although the topic has been rumbling for five years or more. Most research-active higher educational establishments have or are about to publish general guidelines, which predominantly take the form of aspirational targets rather than actionable examples or use-cases. Because the concepts remain somewhat abstract, one can encounter questions from researchers such as “how should I go about achieving such RDM (research data management)?” I thought it might be useful for me to here summarise some key features in the form of an FAQ that can help answer that question. I will concentrate purely on the sub-set chemistry about which I know most.

(more…)

Single Figure (nano)publications, reddit AMAs and other new approaches to research reporting

Wednesday, August 5th, 2015

I recently received two emails each with a subject line new approaches to research reporting. The traditional 350 year-old model of the (scientific) journal is undergoing upheavals at the moment with the introduction of APCs (article processing charges), a refereeing crisis and much more. Some argue that brand new thinking is now required. Here are two such innovations (and I leave you to judge whether that last word should have an appended ?).

(more…)

Intermolecular atom-atom bonds in crystals? The O…O case.

Saturday, July 25th, 2015

I recently followed this bloggers trail; link1link2 to arrive at this delightful short commentary on atom-atom bonds in crystals[cite]10.1107/S2052252515002006[/cite] by Jack Dunitz. Here he discusses that age-old question (to chemists), what is a bond? Even almost 100 years after Gilbert Lewis’ famous analysis,[cite]10.1021/ja02261a002[/cite] we continue to ponder this question. Indeed, quite a debate on this topic broke out in a recent post here. My eye was caught by one example in Jack's article: "The close stacking of planar anions, as occurs in salts of croconic acid …far from producing a lowering of the crystal energy, this stacking interaction in itself leads to an increase by several thousand kJ mol−1 arising from Coulombic repulsion between the doubly negatively charged anions" I thought I might explore this point a bit further in this post.

(more…)

The 2015 Bradley-Mason prize for open chemistry.

Friday, June 26th, 2015

Open principles in the sciences in general and chemistry in particular are increasingly nowadays preached from funding councils down, but it can be more of a challenge to find innovative practitioners. Part of the problem perhaps is that many of the current reward systems for scientists do not always help promote openness. Jean-Claude Bradley was a young scientist who was passionately committed to practising open chemistry, even though when he started he could not have anticipated any honours for doing so. A year ago a one day meeting at Cambridge was held to celebrate his achievements, followed up with a special issue of the Journal of Cheminformatics. Peter Murray-Rust and I both contributed and following the meeting we decided to help promote Open Chemistry via an annual award to be called the Bradley-Mason prize. This would celebrate both “JC” himself and Nick Mason, who also made outstanding contributions to the cause whilst studying at Imperial College. The prize was initially to be given to an undergraduate student at Imperial, but was also extended to postgraduate students who have promoted and showcased open chemistry in their PhD researches.

(more…)

Discovering chemical concepts from crystal structure statistics: The Jahn-Teller effect

Saturday, May 30th, 2015

I am on a mission to persuade my colleagues that the statistical analysis of crystal structures is a useful teaching tool.  One colleague asked for a demonstration and suggested exploring the classical Jahn-Teller effect (thanks Milo!). This is a geometrical distortion associated with certain molecular electronic configurations, of which the best example is illustrated by octahedral copper complexes which have a d9 electronic configuration. The eg level shown below is occupied by three electrons and which can therefore distort in one of two ways to eliminate the eg degeneracy by placing the odd electron into either a x2-y2 or a z2 orbital. Here I explore how this effect can be teased out of crystal structures.

(more…)

R-X≡X-R: G. N. Lewis’ 100 year old idea.

Friday, May 22nd, 2015

As I have noted elsewhere, Gilbert N. Lewis wrote a famous paper entitled “the atom and the molecule“, the centenary of which is coming up.[cite]10.1021/ja02261a002[/cite] In a short and rarely commented upon remark, he speculates about the shared electron pair structure of acetylene,  R-X≡X-R (R=H, X=C). It could, he suggests, take up three forms. H-C:::C-H and two more which I show as he drew them. The first of these would now be called a bis-carbene and the second a biradical.

(more…)