Archive for the ‘Interesting chemistry’ Category

Patterns of behaviour: serendipity in action for enantiomerisation of F-S-S-Cl

Thursday, September 19th, 2013

Paul Schleyer sent me an email about a pattern he had spotted, between my post on F3SSF and some work he and Michael Mauksch had done 13 years ago with the intriguing title “Demonstration of Chiral Enantiomerization in a Four-Atom Molecule“.[cite]http://doi.org/d8g2nw[/cite] Let me explain the connection, but also to follow-up further on what I discovered in that post and how a new connection evolved.FSSF3-gen

(more…)

A two-publisher model for the scientific article: narrative+shared data.

Sunday, September 15th, 2013

I do go on rather a lot about enabling or hyper-activating[cite]10.1039/P29950000007[/cite] data. So do others[cite]10.1038/nj7461-243a[/cite]. Why is sharing data important?

(more…)

The dimer of SF2: small is beautiful (and weird).

Thursday, September 12th, 2013

Andy Extance at the Chemistry World blog has picked up on a fascinating article[cite]10.1021/jz401578h[/cite] on the dimer of SF2. This molecule has three F atoms on one S, and only one on the other; FSSF3. But all four S-F bonds are of different length. Lindquist and Dunning claim that the minimum energy pathway to dissociation to two SF2 molecules does not involve breaking either the longest or the weakest SF bond. This was too much for me to resist investigating further!

(more…)

Full-colour 3D printing of molecular models and orbitals (wavefunctions).

Sunday, August 18th, 2013

We have been experimenting with full-colour 3D printing of molecular objects. I thought I might here share some of our observations. Firstly, I list the software used:

(more…)

Molecule-sized pixels.

Sunday, August 11th, 2013

The ultimate reduction in size for an engineer is to a single molecule. It’s been done for a car; now it has been reported for the pixel (picture-element).[cite]10.1021/ja404256s[/cite]

(more…)

VSEPR Theory: A closer look at chlorine trifluoride, ClF3.

Saturday, July 27th, 2013

Valence shell electron pair repulsion theory is a simple way of rationalising the shapes of many compounds in which a main group element is surrounded by ligands. ClF3 is a good illustration of this theory.

(more…)

The butterfly effect in chemistry: bimodal bond angles.

Thursday, July 18th, 2013

This potential example of a molecule on the edge of chaos was suggested to me by a student (thanks Stephen!), originating from an inorganic tutorial. It represents a class of Mo-complex ligated by two dithiocarbamate ligands and two aryl nitrene ligands (Ar-N:).Mo

(more…)

The butterfly effect in chemistry: Bimodal M~S bonds?

Sunday, July 14th, 2013

I noted previously that some 8-ring cyclic compounds could exist in either a planar-aromatic or a non-planar-non-aromatic mode, the mode being determined by apparently quite small changes in a ring substituent. Hunting for other examples of such chemistry on the edge, I did a search of the Cambridge crystal database for metal sulfides. 

(more…)

The butterfly effect in chemistry: aromaticity on the edge of chaos.

Thursday, July 11th, 2013

The butterfly effect summarises how a small change to a system may result in very large and often unpredictable (chaotic) consequences. If the system is merely on the edge of chaos, the consequences are predictable, but nevertheless finely poised between e.g. two possible outcomes. Here I ask how a molecule might manifest such behaviour.

(more…)

Hexacoordinate hydrogen.

Monday, July 8th, 2013

A feature of a blog which is quite different from a journal article is how rapidly a topic might evolve. Thus I started a few days ago with the theme of dicarbon (C2), identifying a metal carbide that showed C2 as a ligand, but which also entrapped a single carbon in hexa-coordinated mode. A comment was posted bringing attention to the origins of the discovery of hexacoordinated carbon, and we moved on to exploring the valency in one such species (CLi6). Here I ask if hydrogen itself might exhibit such coordination.

(more…)