Archive for the ‘Interesting chemistry’ Category

Metallic carbon nanotori

Thursday, June 2nd, 2011

The interface between physics, chemistry (and materials science) can be a fascinating one. Here I show a carbon nanotorus, devised by physicists[cite]10.1103/PhysRevLett.88.217206[/cite] a few years ago. It is a theoretical species, and was predicted to have a colossal paramagnetic moment.

(more…)

Conformational restriction involving formyl CH…F hydrogen bonds.

Tuesday, May 31st, 2011

The title of this post paraphrases E. J. Corey’s article in 1997 (DOI: 10.1016/S0040-4039(96)02248-4) which probed the origins of conformation restriction in aldehydes. The proposal was of (then) unusual hydrogen bonding between the O=C-H…F-B groups. Here I explore whether the NCI (non-covalent-interaction) method can be used to cast light on this famous example of how unusual interactions might mediate selectivity in organic reactions.

(more…)

Déjà vu all over again. Are H…H interactions attractive or repulsive?

Tuesday, May 31st, 2011

The Pirkle reagent is a 9-anthranyl derivative (X=OH, Y=CF3). The previous post on the topic had highlighted DIST1, the separation of the two hydrogen atoms shown below. The next question to ask is how general this feature is. Here we take a look at the distribution of lengths found in the Cambridge data base, and focus on another interesting example.

(more…)

The inner secrets of an ion-pair: Isobornyl chloride rearrangements.

Sunday, May 29th, 2011

Observation of the slow racemization of isobornyl chloride in a polar solvent in 1923-24 by Meerwein led to the recognition that mechanistic interpretation is the key to understanding chemical reactivity. The hypothesis of ion pairs in which a chloride anion is partnered by a carbocation long ago entered the standard textbooks (see DOI 10.1021/ed800058c and 10.1021/jo100920e for background reading). But the intimate secrets of such ion-pairs are still perhaps not fully recognised. Here, to tease some of them them out, I use the NCI method, which has been the subject of several recent posts.

(more…)

Déjà vu: Pirkle for a third time!

Wednesday, May 25th, 2011

This molecule is not leaving me in peace. It and I first met in 1990 (DO: 10.1039/C39910000765), when we spotted the two unusual π-facial bonds formed when it forms a loose dimer. The next step was to use QTAIM to formalise this interaction, and this led to spotting a second one missed the first time round (labelled 2 in that post). Then a method known as NCI was tried, which revealed an H…H interaction, labelled ? in that post! Here I discuss the origins of the ?

(more…)

The inner secrets of the DNA structure.

Wednesday, May 18th, 2011

In earlier posts, I alluded to what might make DNA wind into a left or a right-handed helix. Here I switch the magnification of our structural microscope up a notch to take a look at some more inner secrets.

(more…)

Nobelocene: a (hypothetical) 32-electron shell molecule?

Friday, April 29th, 2011

The two previous posts have explored one of the oldest bonding rules (pre-dating quantum mechanics), which postulated that filled valence shells in atoms forming molecules follow the magic numbers 2, 8, 18 and 32. Of the 59,025,533 molecules documented at the instant I write this post, only one example is claimed for the 32-electron class. Here I suggest another, Nobelocene (one which given the radioactive instability of nobelium, is unlikely to be ever confirmed experimentally!)

(more…)

Beryllocene and Uranocene: The 8, 18 and 32-electron rules.

Monday, April 25th, 2011

In discussing ferrocene in the previous post, I mentioned Irving Langmuir’s 1921 postulate that filled valence shells in what he called complete molecules would have magic numbers of 2, 8, 18 or 32 electrons (deriving from the sum of terms in 2[1+3+5+7]). The first two dominate organic chemistry of course, whilst the third is illustrated by the transition series, ferrocene being an example of such. The fourth case is very much rarer, only one example ever having been suggested[cite]10.1002/anie.200604198[/cite], it deriving from the actinides. In this post, I thought I would augment ferrocene (an 18-electron example) with beryllocene (an 8-electron example) and then speculate about 32-electron metallocenes.

(more…)

Ferrocene

Sunday, April 17th, 2011

The structure of ferrocene was famously analysed by Woodward and Wilkinson in 1952[cite]10.1021/ja01128a527[/cite],[cite]10.1016/S0022-328X(00)88947-0[/cite], symmetrically straddled in history by Pauling (1951) and Watson and Crick (1953). Quite a trio of Nobel-prize winning molecular structural analyses, all based on a large dose of intuition. The structures of both proteins and DNA succumbed to models built from simple Lewis-type molecules with covalent (and hydrogen) bonds; ferrocene is intriguingly similar and yet different. Similar because e.g. carbon via four electron pair bonds. He did not (in 1916) realise that 8 = 2(1 + 3), and that the next in sequence would be 18 = 2(1 + 3 + 5). That would have to wait for quantum mechanics, and of course inorganic chemists now call it the 18-electron rule (for an example of the 32-electron rule, or 2+6+10+14, as first suggested by Langmuir in 1921[cite]10.1126/science.54.1386.59[/cite] (see also here[cite]10.1002/anie.200604198[/cite]).

(more…)

Why are α-helices in proteins mostly right handed?

Saturday, April 9th, 2011

Understanding why and how proteins fold continues to be a grand challenge in science. I have described how Wrinch in 1936 made a bold proposal for the mechanism, which however flew in the face of much of then known chemistry. Linus Pauling took most of the credit (and a Nobel prize) when in a famous paper[cite]10.1073/pnas.37.4.205[/cite] in 1951 he suggested a mechanism that involved (inter alia) the formation of what he termed α-helices. Jack Dunitz in 2001[cite]10.1002/1521-3773(20011119)40:22%3C4167::AID-ANIE4167%3E3.0.CO;2-Q[/cite] wrote a must-read article[cite]10.fgkwqb[/cite] on the topic of “Pauling’s Left-handed α-helix” (it is now known to be right handed). I thought I would revisit this famous example with a calculation of my own and here I have used the ωB97XD/6-311G(d,p) DFT procedure[cite]10.1021/ct100469b[/cite] to calculate some of the energy components of a small helix comprising (ala)6 in both left and right handed form.

(more…)