Archive for the ‘Interesting chemistry’ Category

VSEPR Theory: A closer look at bromine trifluoride, BrF3.

Tuesday, February 14th, 2017

I analysed the bonding in chlorine trifluoride a few years back in terms of VSEPR theory. I noticed that several searches on this topic which led people to this post also included a query about the differences between it and the bromine analogue. For those who posed this question, here is an equivalent analysis.

(more…)

Na2He: a stable compound of helium and sodium at high pressure.

Saturday, February 11th, 2017

On February 6th I was alerted to this intriguing article[cite]10.1038/nchem.2716[/cite] by a phone call, made 55 minutes before the article embargo was due to be released. Gizmodo wanted to know if I could provide an (almost) instant quote. After a few days, this report of a stable compound of helium and sodium still seems impressive to me and I now impart a few more thoughts here.

(more…)

Forming a stabilized m-benzyne.

Friday, January 20th, 2017

The story so far. Inspired by the report of the most polar neutral compound yet made, I suggested some candidates based on the azulene ring system that if made might be even more polar. This then led to considering a smaller π-analogue of azulene, m-benzyne. Here I ponder how a derivative of this molecule might be made, using computational profiling as one reality check.

(more…)

Braiding a molecular knot with eight crossings.

Friday, January 20th, 2017

This is one of those posts of a molecule whose very structure is interesting enough to merit a picture and a 3D model. The study[cite]10.1126/science.aal1619[/cite] reports a molecular knot with the remarkable number of eight crossings.

(more…)

Ritonavir: a look at a famous example of conformational polymorphism.

Monday, January 2nd, 2017

Here is an inside peek at another one of Derek Lowe’s 250 milestones in chemistry, the polymorphism of Ritonavir.[cite]10.1023/A:1011052932607[/cite] The story in a nutshell concerns one of a pharma company’s worst nightmares; a drug which has been successfully brought to market unexpectedly “changes” after a few years on market to a less effective form (or to use the drug term, formulation). This can happen via a phenomenon known as polymorphism, where the crystalline structure of a molecule can have more than one form.[cite]10.1021/ar00052a005[/cite],[cite]10.1002/anie.201410356[/cite],[cite]10.1039/D1SC06074K[/cite] In this case, form I was formulated into soluble tablets for oral intake. During later manufacturing, a new less-soluble form appeared and “within weeks this new polymorph began to appear throughout both the bulk drug and formulation areas“[cite]10.1023/A:1011052932607[/cite]

(more…)

The dipole moments of highly polar molecules: glycine zwitterion.

Saturday, December 24th, 2016

The previous posts produced discussion about the dipole moments of highly polar molecules. Here to produce some reference points for further discussion I look at the dipole moment of glycine, the classic zwitterion (an internal ion-pair).

(more…)

Forking “The most polar neutral compound synthesized” into m-benzyne.

Wednesday, December 21st, 2016

A project fork is defined (in computing) as creating a distinct and separate strand from an existing (coding) project. Here I apply the principle to the polar azulene 4 explored in an earlier post, taking m-benzyne as a lower homologue of azulene as my starting point.

(more…)

Molecules of the year? Pnictogen chains and 16 coordinate Cs.

Monday, December 19th, 2016

I am completing my survey of the vote for molecule of the year candidates, which this year seems focused on chemical records of one type or another.

(more…)

Molecules of the year? The most polar neutral compound synthesized…

Sunday, December 18th, 2016

This, the fourth candidate provided by C&EN for a vote for the molecule of the year as discussed here, lays claim to the World’s most polar neutral molecule (system 1 shown below).[cite]10.1002/anie.201508249[/cite] Here I explore a strategy for extending that record.

(more…)

Molecule of the year? “CrN123”, a molecule with three different types of Cr-N bond.

Friday, December 16th, 2016

Here is a third candidate for the C&EN “molecule of the year” vote. This one was shortlisted because it is the first example of a metal-nitrogen complex exhibiting single, double and triple bonds from different nitrogens to the same metal[cite]10.1039/c5sc04608d[/cite] (XUZLUB has a 3D display available at DOI: 10.5517/CC1JYY6M). Since no calculation of its molecular properties was reported, I annotate some here.

(more…)