More than 100 years ago, before the quantum mechanical treatment of molecules had been formulated, G. N. Lewis proposed[cite]10.1021/ja02261a002[/cite] a simple model for chemical bonding that is still taught today. This is the idea of the three categories of bond we know as single, double and triple, comprising respectively two, four and six shared electrons each, at least for the very common carbon-carbon bond. A little more than a decade ago, this was extended upwards to the eight-electron quadruple bond.[cite]10.1038/nchem.1263[/cite]. Now, at the other extreme of downwards, a molecule has been characterised in the solid state with a one-electron C-C bond.[cite]10.1038/s41586-024-07965-1[/cite] In this sub-two-electron region, bonds such as hydrogen bonds have long been recognised and they form part of a class of “weak” bonding known instead as exhibiting “non-covalent-interactions” or NCI. But specifically a one-electron carbon-carbon bond stands apart from these weaker types and so it is certainly news when one such is reported and characterised in the crystalline state by x-ray diffraction.