The butterfly effect in chemistry: Bimodal M~S bonds?

July 14th, 2013

I noted previously that some 8-ring cyclic compounds could exist in either a planar-aromatic or a non-planar-non-aromatic mode, the mode being determined by apparently quite small changes in a ring substituent. Hunting for other examples of such chemistry on the edge, I did a search of the Cambridge crystal database for metal sulfides. 

Read the rest of this entry »

The butterfly effect in chemistry: aromaticity on the edge of chaos.

July 11th, 2013

The butterfly effect summarises how a small change to a system may result in very large and often unpredictable (chaotic) consequences. If the system is merely on the edge of chaos, the consequences are predictable, but nevertheless finely poised between e.g. two possible outcomes. Here I ask how a molecule might manifest such behaviour.

Read the rest of this entry »

Hexacoordinate hydrogen.

July 8th, 2013

A feature of a blog which is quite different from a journal article is how rapidly a topic might evolve. Thus I started a few days ago with the theme of dicarbon (C2), identifying a metal carbide that showed C2 as a ligand, but which also entrapped a single carbon in hexa-coordinated mode. A comment was posted bringing attention to the origins of the discovery of hexacoordinated carbon, and we moved on to exploring the valency in one such species (CLi6). Here I ask if hydrogen itself might exhibit such coordination.

Read the rest of this entry »

150,000,000 DFT calculations on 2,300,000 compounds!

July 5th, 2013

The title of this post summarises the contents of a new molecular database: www.molecularspace.org[cite]10.1021/jz200866s[/cite] and I picked up on it by following the post by Jan Jensen at www.compchemhighlights.org (a wonderful overlay journal that tracks recent interesting articles). The molecularspace project more formally is called “The Harvard Clean Energy Project: Large-scale computational screening and design of organic photovoltaics on the world community grid“. It reminds of a 2005 project by Peter Murray-Rust et al at the same sort of concept[cite]10.1007/s00894-005-0278-1[/cite] (the World-Wide-Molecular-Matrix, or WWMM[cite]10.1186/1758-2946-3-42[/cite]), although the new scale is certainly impressive. Here I report my initial experiences looking through molecularspace.org

Read the rest of this entry »

Is CLi6 hypervalent?

July 5th, 2013

A comment made on the previous post on the topic of hexa-coordinate carbon cited an article entitled “Observation of hypervalent CLi6 by Knudsen-effusion mass spectrometry“[cite]10.1038/355432a0[/cite] by Kudo as a amongst the earliest of evidence that such species can exist (in the gas phase). It was a spectacular vindication of the earlier theoretical prediction[cite]10.1021/ja00379a051[/cite],[cite]10.1021/ja00356a045[/cite] that such 6-coordinate species are stable with respect to dissociation to CLi4 and Li2.

Read the rest of this entry »

Is dicarbon (C2) a molecule of chemical interest?

July 3rd, 2013

C2 (dicarbon) is certainly interesting from a theoretical point of view. Whether or not it can be described as having a quadruple bond has induced much passionate discussion[cite]10.1038/nchem.1263[/cite],[cite]10.1002/anie.201208206[/cite],[cite]10.1002/anie.201301485[/cite],[cite]10.1002/anie.201302350[/cite]. Its occurrence in space and in flames is also well-known. But does it have what might be called a conventional chemistry? Other highly reactive species (cyclobutadiene is a well-known example) can often be tamed by trapping as a ligand coordinated to a metal and so one might speculate upon how C2 responds to the proximity of a metal. As is noted here[cite]10.1002/anie.201208206[/cite], dicarbon as a ligand has been known a long time as part of what is referred to as carbide chemistry. In this regard it is thought of as the di-anion, C22- (and isoelectronic therefore with dinitrogen). Thus calcium carbide, but in fact the degree to which the dicarbon can absorb electrons is thought to be wide (as judged by the resulting C-C bond length, see[cite]10.1002/anie.201208206[/cite]). Here I take a look at just one metal carbide[cite]10.1016/j.jssc.2008.08.005[/cite] that caught my eye (there are hundreds of others, many no doubt equally interesting!).

Read the rest of this entry »

Mechanism of the Boekelheide rearrangement

June 26th, 2013

A reader asked me about the mechanism of the reaction of 2-picoline N-oxide with acetic anhydride to give 2-acetoxymethylpyridine (the Boekelheide Rearrangement[cite]10.1002/ejoc.201000936[/cite]). He wrote ” I don’t understand why the system should prefer to go via fragmentation-recombination (… the evidence being that oxygen labelling shows scrambling) when there is an easy concerted pathway available (… a [3,3]sigmatropic shift). Furthermore, is it possible for two pathways to co-exist?” Here is how computation might enlighten us.

Read the rest of this entry »

Research data and the “h-index”.

June 24th, 2013

The blog post by Rich Apodaca entitled “The Horrifying Future of Scientific Communication” is very thought provoking and well worth reading. He takes us through disruptive innovation, and how it might impact upon how scientists communicate their knowledge. One solution floated for us to ponder is that “supporting Information, combined with data mining tools, could eliminate most of the need for manuscripts in the first place“. I am going to juxtapose that suggestion on something else I recently discovered. 

Read the rest of this entry »

Mechanistic arrow pushing. A proposed addition to its rules.

June 12th, 2013

A little while ago, I set out some interpretations of how to push curly arrows. I also appreciate that some theoretically oriented colleagues regard the technique as neither useful nor in the least rigorous, whereas towards the other extreme many synthetically minded chemists view the ability to push a reasonable set of arrows for a proposed mechanism as of itself constituting evidence in its favour.[cite]10.1186/1752-153X-7-94[/cite] Like any language for expressing ideas, the tool needs a grammar (rules) and a vocabulary, and perhaps also an ability to carry ambiguity. These thoughts surfaced again via a question asked of me by a student: “is the mechanism for the hydrogens in protonated benzene whizzing around the ring a [1,2] or a [1,6] pericyclic sigmatropic shift?”. 

Read the rest of this entry »

Secrets of a university lecturer: 1981-1983.

June 6th, 2013

Many moons ago, when I was a young(ish) lecturer, and much closer in time to my laboratory roots of organic synthesis, I made some chemistry videos. One of these has resurfaced, somewhat  (to me at least) unexpectedly. Nowadays of course, such demonstrations are all carried out using virtual simulations (Flash animations etc) as the equipment itself becomes less common.

Read the rest of this entry »