In a previous post, I set out how to show how one can reduce a 1H NMR spectrum to the structure [A] below. I speculated how a further test could be applied to this structure; back predicting its spectrum using just quantum mechanics. Overkill I know, but how well might the two match?
Secrets of a university tutor: conformational analysis and NMR spectroscopy.
February 3rd, 2013σ-π-Conjugation: seeking evidence by a survey of crystal structures.
February 3rd, 2013The electronic interaction between a single bond and an adjacent double bond is often called σ-π-conjugation (an older term for this is hyperconjugation), and the effect is often used to e.g. explain why more highly substituted carbocations are more stable than less substituted ones. This conjugation is more subtle in neutral molecules, but following my use of crystal structures to explore the so-called gauche effect (which originates from σ-σ-conjugation), I thought I would have a go here at seeing what the crystallographic evidence actually is for the σ-π-type.
Secrets of a university tutor: unravelling a mechanism using spectroscopy.
January 31st, 2013It is always rewarding when one comes across a problem in chemistry that can be solved using a continuous stream of rules and logical inferences from them. The example below[1] is one I have been using as a tutor in organic chemistry for a few years now, and I share it here. It takes around 50 minutes to unravel with students.
References
- K. Harano, M. Eto, K. Ono, K. Misaka, and T. Hisano, "Sequential pericyclic reactions of unsaturated xanthates. One-pot synthesis of hydrobenzo[c]thiophenes", Journal of the Chemical Society, Perkin Transactions 1, pp. 299, 1993. https://doi.org/10.1039/p19930000299
How does one describe the wavefunction for the π-complex formed from PhNHOPh?
January 25th, 2013Although have dealt with the π-complex formed by protonation of PhNHOPh in several posts, there was one aspect that I had not really answered; what is the most appropriate description of its electronic nature? Here I do not so much provide an answer, as try to show how difficult getting an accurate answer might be.
The demographics of a blog readership.
January 20th, 2013With metrics in science publishing controversial to say the least, I pondered whether to write about the impact/influence a science-based blog might have (never mind whether it constitutes any measure of esteem). These are all terms that feature large when an (academic) organisation undertakes a survey of its researchers’ effectiveness.‡ WordPress (the organisation that provides the software used for this blog) recently enhanced the stats it offers for its users, and one of these caught my eye.
Aromaticity in the benzidine-like π-complex formed from PhNHOPh.
January 19th, 2013The transient π-complex formed during the “[5,5]” sigmatropic rearrangement of protonated N,O-diphenyl hydroxylamine can be (formally) represented as below, namely the interaction of a six-π-electron aromatic ring (the phenoxide anion 2) with a four-π-electron phenyl dication-anion pair 1. Can one analyse this interaction in terms of aromaticity?
The π-complex in the benzidine rearrangement: a molecular orbital analysis.
January 18th, 2013Michael Dewar[1] famously implicated a so-called π-complex in the benzidine rearrangement, back in the days when quantum mechanical calculations could not yet provide a quantitatively accurate reality check. Because this π-complex actually remains a relatively unusual species to encounter in day-to-day chemistry, I thought I would try to show in a simple way how it forms.
References
- M. Dewar, and H. McNicoll, "Mechanism of the benzidine rearrangement", Tetrahedron Letters, vol. 1, pp. 22-23, 1959. https://doi.org/10.1016/s0040-4039(01)82765-9
The strangely attractive conformation of C17H36.
January 13th, 2013We tend to think of simple hydrocarbons as relatively inert and un-interesting molecules. However, a recent article[1], which was in fact highlighted by Steve Bachrach on his blog , asks what “The Last Globally Stable Extended Alkane” might be. In other words, at what stage does a straight-chain hydrocarbon fold back upon itself, and no significant population of the linear form remain? The answer was suggested to be C17H36. I thought I might subject this conformation to an NCI (non-covalent-interaction) analysis.
References
- N.O.B. Lüttschwager, T.N. Wassermann, R.A. Mata, and M.A. Suhm, "The Last Globally Stable Extended Alkane", Angewandte Chemie International Edition, vol. 52, pp. 463-466, 2012. https://doi.org/10.1002/anie.201202894