Sometimes you come across a reaction which is so simple in concept that you wonder why it took so long to be accomplished in practice. In this case, replacing toxic ozone O3 as used to fragment an alkene into two carbonyl compounds (“ozonolysis”) by a relatively non-toxic simple nitro-group based reagent, ArNO2 in which the central atom of ozone is substituted by an N-aryl group. As reported by Derek Lowe, two groups have published[cite]10.1021/jacs.2c05648[/cite], [cite]10.1038/s41586-022-05211-0[/cite] details of such a reaction (Ar = 4-cyano or 3-CF3,5-NO2). But there are (at least) two tricks; the first is to use photo-excitation using purple LEDs (390nm light) to activate the nitro group. The second is to establish the best aryl substituents to use for achieving maximum yields of the carbonyl compounds and the best conditions for achieving the cyclo-reversion reaction, shown below as TS1. That step requires heating the cyclo-adduct up to ~80° in (aqueous) acetonitrile for anywhere between 1-48 hours. Here I take a computational look at that last step, the premise being that if such a model is available for this mechanism, it could in principle be used to optimise the conditions for the process.
Nitroaryls- A less-toxic alternative reagent for ozonolysis: modelling the final step to form carbonyls.
October 8th, 2022A new type of bispericyclic reaction: Cyclopropanone + butadiene.
September 30th, 2022The term bispericyclic reaction was famously coined by Caramella et al in 2002[cite]10.1021/ja016622h[/cite] to describe the unusual features of the apparently innocuous dimerisation of cyclopentadiene. It shows features of two paths for different pericyclic reactions, comprising a 2+4 cycloaddition in the early stages, but evolving into a (degenerate) pair of [3,3] sigmatropic reactions in the latter stages. Houk (who also uses the term ambimodal) has in recent years extended the number of examples of such pericyclic sequences to trispericyclic[cite]10.1021/jacs.8b12674[/cite] (see here) and even an ambimodel tetrapericyclic reaction, as reported at the recent WATOC event. Here I show an example of a new type of bispericyclic reaction, comprising a 2+4 cycloaddition combined with a electrocyclic ring opening.
Examples of inverted or hemispherical carbon?
September 15th, 2022In previously asking what the largest angle subtended at four-coordinate carbon might be, I noted that as the angle increases beyond 180°, the carbon becomes inverted, or hemispherical (all four ligands in one hemisphere). So what does a search for this situation reveal in the CSD? The query can be formulated as below, in which the distance from the centroid of the four ligands to the central carbon is specified to be in e.g. the range 0.8 to 1.1Å. For tetrahedral carbon surrounded by four carbon ligands, the value would be close to zero, so any value larger than say 0.8Å is worth inspecting.
What is the largest angle possible at 4-coordinate carbon – 180°?
September 11th, 2022Four-coordinate carbon normally adopts a tetrahedral shape, where the four angles at the carbon are all 109.47°. But how large can that angle get, and can it even get to be 180°?
Why does octafluorocubane have such a high sublimation point?
September 8th, 2022The recently reported synthesis[cite]10.1126/science.abq0516[/cite] of octafluorocubane established a sublimation point as 168.1–177.1°C (a melting point was not observed). In contrast, the heavier perfluoro-octane has an m.p. of -25°C. Why the difference? Firstly, the crystal structure is shown below, albeit as a dimer rather than a periodic lattice (click on image to obtain 3D coordinates).
Octafluorocubane radical anion – where does the extra electron sit?
August 29th, 2022Derek Lowe reports the story[cite]10.1126/science.abq0516[/cite] that the recently synthesized octafluorocubane can absorb one electron to form a radical anion – an electron in a cube. So I thought it would be fun to compute exactly where that electron sits!
Four stages in the evolution of interactive ESI as part of articles in chemistry journals.
August 25th, 2022A previous post was triggered by Peter alerting me that interactive electronic supporting information (IESI) we had submitted to a journal in 2005[cite]10.1021/ic0519988[/cite] appeared to be strangely missing from the article landing page. This set me off recollecting our journey, which had started around 1998, and to explore what the current state of these ancient IESIs were in 2022. I have now reached 2014 in this journey, which is being recorded as it happens in the comments page of the post. I discovered there were four distinct stages in that evolution of IESI which I thought it would be of interest to record here.
Unexpected Isomerization of Oxetane-Carboxylic Acids – an alternative autocatalytic mechanism evaluated.
August 17th, 2022Previously, I looked at autocatalytic mechanisms where the carboxyl group of an oxetane-carboxylic acid could catalyse its transformation to a lactone, finding that a chain of two such groups were required to achieve the result. Here I look at an alternative mode where the oxetane-carboxylate itself acts as the transfer chain, via a H-bonded dimer shown below.