Organic chemistry has some no-go areas, where few molecules dare venture. One of them is described by a concept known as anti-aromaticity. Whereas aromatic molecules are favoured species, their anti-equivalent is avoided. I previously illustrated this (Hückel rule) with cyclopropenium anion. Now I take a look at cyclobutadiene, for which the π-system is said to be iso-electronic (where two electrons in a double bond have replaced the carbanion lone pair).
Some fun with no-go areas of chemistry: cyclobutadiene.
September 18th, 2011Anatomy of a simple reaction: the hydration of an alkene.
September 4th, 2011The hydration of an alkene by an acid is one of those fundamental reactions, taught early on in most chemistry courses. What can quantum mechanics teach us about the mechanism of the reaction?
A stable borylene. An exercise in lateral thinking.
August 7th, 2011I have often heard the question posed “how much of chemistry has been discovered?” Another might be “has most of chemistry, like low-hanging fruit, already been picked?“. Well, time and time again, one comes across examples which are only a simple diagram or so away from what might be found in any introductory chemistry text, and which would tend to indicate the answers to these questions is a resounding no. Take for example the three reactions shown below.
Extreme chemical intimacy: the Xe2@C60 ion-pair.
August 3rd, 2011Unusual bonds are always intriguing, and the Xe-Xe bond is no exception. It was first reported (10.1002/anie.199702731) for the species Xe2+. Sb4F21– and its length (3.09Å) was claimed as “unsurpassed in length in main group chemistry by any other element -element bond”. Krapp and Frenking then creatively tweaked the bond (in a computer). The counterion was replaced by C60, and the two xenon atoms placed inside! Buckyballs have a fascinating ability to absorb electrons, up to six in fact, from whatever is placed inside the cavity, and so this assembly acts as a rather intriguing ion-pair. So the issue reduces to how many electrons does C60 manage to scavenge from two Xenon atoms, and what is the nature of any resulting bonding formed between these two atoms?
Breakdowns in communication: the two cultures
August 2nd, 2011In his famous lecture in 1959, C. P. Snow wrote about the breakdown in communications between the “two cultures” of modern society — the sciences and the humanities (arts). That was then. This is now, and the occasion of my visit to a spectacular “city of arts and sciences complex” in Europe. An un-missable exhibit representing science and life was the 15m high model of DNA. Now to be fair this is styled an artist’s impression, and one presumes that an artist is allowed license. But how much license? And at how much expense to the science? And is there a counterbalance to the art where the science is fastidiously (but artistically) preserved?
Computers 1967-2011: a personal perspective. Part 3. 1990-1994.
July 12th, 2011In 1986 or so, molecular modelling came of age. Richard Counts, who ran an organisation called QCPE (here I had already submitted several of the program codes I had worked on) had a few years before contacted me to ask for my help with his Roadshow. He had started these in the USA as a means of promoting QCPE, which was the then main repository of chemistry codes, and as a means of showing people how to use the codes. My task was to organise a speakers list, the venue being in Oxford in a delightful house owned by the university computing services. Access to VAX computers was provided, via VT100 terminals. Amazingly, these terminals could do very primitive molecular graphics (using delightfully named escape codes, which I learnt to manipulate).
The stereochemistry of [8+2] pericyclic cycloadditions.
July 10th, 2011Steve Bachrach has blogged on the reaction shown below. If it were a pericyclic cycloaddition, both new bonds would form simultaneously, as shown with the indicated arrow pushing. Ten electrons would be involved, and in theory, the transition state would have 4n+2 aromaticity. In fact Fernandez, Sierra and Torres have reported that they can trap an intermediate zwitterion 2, and in this sense therefore, the reaction is not pericyclic but nucleophilic addition from the imine lone pair to the carbonyl of the ketene (it finds the half way stage convivial). But this got me thinking. Does this reaction have any pericyclic character at all? And if so, could it be enhanced by design?