My university tutorial yesterday covered selective reductions of functional groups in organic chemistry. My thoughts on that topic have now morphed into something rather different. Scientific research has a habit of having this sort of thing happen.
Morphing an arrow-pushing tutorial into a dihydrogen bond
December 2nd, 2010Anatomy of an arrow-pushing tutorial: reducing a carboxylic acid.
December 1st, 2010Arrow pushing (why never pulling?) is a technique learnt by all students of organic chemistry (inorganic chemistry seems exempt!). The rules are easily learnt (supposedly) and it can be used across a broad spectrum of mechanism. But, as one both becomes more experienced, and in time teaches the techniques oneself as a tutor, its subtle and nuanced character starts to dawn. An example of such a mechanism is illustrated below, and in this post I attempt to tease out some of these nuances.
Data-round-tripping: moving chemical data around.
November 20th, 2010For those of us who were around in 1985, an important chemical IT innovation occurred. We could acquire a computer which could be used to draw chemical structures in one application, and via a mysterious and mostly invisible entity called the clipboard, paste it into a word processor (it was called a Macintosh). Perchance even print the result on a laserprinter. Most students of the present age have no idea what we used to do before this innovation! Perhaps not in 1985, but at some stage shortly thereafter, and in effect without most people noticing, the return journey also started working, the so-called round trip. It seemed natural that a chemical structure diagram subjected to this treatment could still be chemically edited, and that it could make the round trip repeatedly. Little did we realise how fragile this round trip might be. Years later, the computer and its clipboard, the chemistry software, and the word processor had all moved on many generations (it is important to flag that three different vendors were involved, all using proprietary formats to weave their magic). And (on a Mac at least) the round-tripping no longer worked. Upon its return to (Chemdraw in this instance), it had been rendered inert, un-editable, and devoid of semantic meaning unless a human intervened. By the way, this process of data-loss is easily demonstrated even on this blog. The chemical diagrams you see here are similarly devoid of data, being merely bit-mapped JPG images. Which is why, on many of these posts, I put in the caption Click for 3D, which gives you access to the chemical data proper (in CML or other formats). And I throw in a digital repository identifier for good measure should you want a full dataset.
Gravitational fields and asymmetric synthesis
November 20th, 2010Our understanding of science mostly advances in small incremental and nuanced steps (which can nevertheless be controversial) but sometimes the steps can be much larger jumps into the unknown, and hence potentially more controversial as well. More accurately, it might be e.g. relatively unexplored territory for say a chemist, but more familiar stomping ground for say a physicist. Take the area of asymmetric synthesis, which synthetic chemists would like to feel they understand. But combine this with gravity, which is outside of their normal comfort zone, albeit one we presume is understood by physicists. Around 1980, one chemist took such a large jump by combining the two, in an article spectacularly entitled Asymmetric synthesis in a confined vortex; Gravitational fields and asymmetric synthesis[cite]10.1021/ja00521a067[/cite]. The experiment was actually quite simple. Isophorone (a molecule with a plane of symmetry and hence achiral) was treated with hydrogen peroxide and the optical rotation measured.
Can a cyclobutadiene and carbon dioxide co-exist in a calixarene cavity?
November 19th, 2010On 8th August this year, I posted on a fascinating article that had just appeared in Science[cite]10.1126/science.1188002[/cite] in which the crystal structure was reported of two small molecules, 1,3-dimethyl cyclobutadiene and carbon dioxide, entrapped together inside a calixarene cavity. Other journals (e.g. Nature Chemistry[cite]10.1038/nchem.823[/cite] ran the article as a research highlight (where the purpose is not a critical analysis but more of an alerting service). A colleague, David Scheschkewitz, pointed me to the article. We both independently analyzed different aspects, and first David, and then I then submitted separate articles for publication describing what we had found. Science today published both David’s thoughts[cite]10.1126/science.1195752[/cite] and also those of another independent group, Igor Alabugin and colleagues[cite]10.1126/science.1196188[/cite]. The original authors have in turn responded [cite]10.1126/science.1195846[/cite]. My own article on the topic will appear very shortly[cite]10.1039/C0CC04023A[/cite]. You can see quite a hornet’s nest has been stirred up!
A historical detective story: 120 year old crystals
November 17th, 2010In 1890, chemists had to work hard to find out what the structures of their molecules were, given they had no access to the plethora of modern techniques we are used to in 2010. For example, how could they be sure what the structure of naphthalene was? Well, two such chemists, William Henry Armstrong (1847-1937) and his student William Palmer Wynne (1861-1950; I might note that despite working with toxic chemicals for years, both made it to the ripe old age of ~90!) set out on an epic 11-year journey to synthesize all possible mono, di, tri and tetra-substituted naphthalenes. Tabulating how many isomers they could make (we will call them AW here) would establish beyond doubt the basic connectivity of the naphthalene ring system. This was in fact very important, since many industrial dyes were based on this ring system, and patents depended on getting it correct! Amazingly, their collection of naphthalenes survives to this day. With the passage of 120 years, we can go back and check their assignments. The catalogued collection (located at Imperial College) comprises 263 specimens. Here the focus is on just one, specimen number number 22, which bears an original label of trichloronaphthalene [2:3:1] and for which was claimed a melting point of 109.5°C. What caught our attention is that a search for this compound in modern databases (Reaxys if you are interested, what used to be called Beilstein) reveals the compound to have a melting point of ~84°C. So, are alarm bells ringing? Did AW make a big error? Were many of the patented dyes not what they seemed?
Secrets of a university tutor: (curly) arrow pushing
October 28th, 2010Curly arrows are something most students of chemistry meet fairly early on. They rapidly become hard-wired into the chemists brain. They are also uncontroversial! Or are they? Consider the following very simple scheme.
The strongest bond in the universe!
October 24th, 2010The rather presumptious title assumes the laws and fundamental constants of physics are the same everywhere (they may not be). With this constraint (and without yet defining what is meant by strongest), consider the three molecules: Read the rest of this entry »
Hypervalency: Third time lucky?
October 23rd, 2010One approach to reporting science which is perhaps better suited to the medium of a blog than a conventional journal article is the opportunity to follow ideas in unexpected, even unconventional directions. Thus my third attempt, like a dog worrying a bone, to explore hypervalency. I have, somewhat to my surprise, found myself contemplating the two molecules I8 and At8. Perhaps it might be better to write them as I(I)7 and At(At)7. This makes it easier to relate both to the known molecule I(F)7. What led to these (allotropes) of the halogens? Well, as I noted before, hypervalency is a concept rooted in covalency, albeit an excess of it! And bonds with the same atom at each end are less likely to be accused of ionicity. I earlier suggested that the nicely covalent IH7 was not hypervalent, with all the electrons which might contribute to hypervalency actually to be found in the H…H regions. The next candidate, I(CN)7 ultimately proved a little too ionic for comfort. So we arrive at II7. At the D5h geometry, it proves not to be a minimum, but a (degenerate) transition state for reductive elimination of I2 (I note parabolically that the 2010 Nobel prize for chemistry was awarded for reactions which involve similar reductive elimination of Pd and other metals to form covalent C-C bonds). Thus I8 is useful only as a thought experiment molecule, and not a species that could actually be made.