How does an anaesthetic work? Surprisingly, it is only recently[cite]10.1038/nchembio.1340[/cite] that the possible binding sites of the anaesthetic propofol (2,6-di-isopropylphenol) have been identified using a technique known as photoaffinity labelling.[cite]10.1016/j.bmc.2011.06.066[/cite] A propofol analogue was constructed[cite]10.1038/nchembio.1340[/cite] by replacing one of the isopropyl groups with a trifluoromethyl diazirine group (R=CF3, X=Y=N below). Upon photolysis, this species looses nitrogen and forms a carbene as a reactive species, which with further chemistry binds covalently[cite]10.1016/j.bmc.2011.06.066[/cite] to adjacent amino acids in the binding pocket.These modified segments could then be analysed by mass spectrometry.[cite]10.1038/nchembio.1340[/cite] An isomer of diazirine is diazomethane, which is some 11 kcal/mol lower in free energy, but fortunately the diazirene is preventing from thermally isomerising to this species by a large kinetic barrier. That was the intro; now for a connection.‡ I recently attended a presentation on another medical topic, the therapeutic uses of carbon monoxide.[cite]10.1038/nrd3228[/cite] In higher concentrations it is notoriously lethal, but with appropriate delivery it can be therapeutic. So, intertwingling, I asked myself what the properties of the carbon monoxide isoelectronic analogue of a diazirine might be (X=C, Y=O below).